Journal of Organometallic Chemistry, 221 (1981) 111–116 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

HYDROCONDENSATION OF CO2

III *. REACTION OF CARBON DIOXIDE AND HYDROGEN WITH COPPER AND PALLADIUM BIS(DIPHENYLPHOSPHINO)-METHANE COMPLEXES

B. DENISE * and R.P.A. SNEEDEN

Institut de Recherches sur la Catalyse, C.N.R.S. 2 avenue Albert Einstein 69626 Villeurbanne Cédex (France)

(Received June 2nd, 1981)

Summary

New bis(diphenylphosphino)methane, (dpm) complexes of palladium have been prepared from $PdCl_2dpm$, either by borohydride reduction or halide abstraction in the presence of added ligand. The catalytic activities of these and other polynuclear palladium and copper complexes in the CO_2/H_2 reaction have been tested. The results confirm the catalytic formation of alkyl formate and dialkyl formamide, but the juxtaposition of two or more metal centres does not appear to promote the catalytic formation of C_2 -compounds (oxalate).

Introduction

Low-valent transition metal aggregates are of current interest not only as models of surface catalysis but also as novel catalytic systems in their own right. The metal carbonyls have received particular attention [2 and 3 and refs cited therein], but there are numerous other complexes wherein the metal centres are held in juxtaposition by one or more constraining ligands. Thus not only does the ligand bis(diphenylphosphino)methane (dpm) form stable polynuclear complexes with several transition metals (e.g. Cu, Pd, Pt, Rh [4-8]), but also in certain cases the metal is present formally in an unusual oxidation state (e.g. Pd^I, Pt^I). In addition certain dpm complexes have the property of coordinating small molecules, generally in A-frame type structures [9].

The catalytic hydrogenation of carbon dioxide on Ni-, Fe- and Cu-based contact masses leads to a variety of products (methane, methanol and their homologues) in which the oxygen atoms of the CO_2 are wholly or in part lost as H_2O

^{*} For part II see ref. 1.

[10]. The most economic exploitation of CO_2 as a source of chemical carbon, however, involves syntheses in which the oxygen atoms are retained (e.g. formate, oxalate, esters, etc...). Formates and formamides may be obtained catalytically from CO_2/H_2 with several transition metal compounds [11–17], whereas oxalates may be obtained by the reductive dimerisation of CO_2 (electrode processes, amalgams [10]). We therefore undertook the present study of the hydrogenation of CO_2 with polynuclear Cu- and Pd-dpm complexes with the idea that the juxtaposition of two or more low-valent transition metal centres might promote the reductive dimerisation of CO_2 .

Results and discussion

Syntheses of complexes

Bis(diphenylphosphino)methane forms mono- and poly-nuclear complexes with numerous transition metal compounds, but the latter are normally the more stable. The structures of several of these complexes, including the tetra- and tri-nuclear Cu^I complexes $[(CuCl)_2dpm]_2$, $[Cu_3Cl_2dpm_3]Cl$ [4,5] the dinuclear Pd^I compound (PdBrdpm)₂ [8] and the monomeric Pd^{II}, PdCl₂dpm [18], have been established by single crystal X-ray structure analyses. We have attempted to extend the group of known palladium-dpm complexes to include Pd⁰ and coordinatively unsaturated Pd^I and Pd^{II} compounds, using either borohydride reduction or halogen abstraction [19].

Sodium borohydride reductions. Sodium borohydride reduction of both I and II in the presence of an equivalent of dpm gave the Pd^0 complex III, eq. 1. The same compound may be obtained by borohydride reduction of $PdCl_2$ -(PhCN)₂ in the presence of 2 equivalents of dpm, eqn. 1.

$$\begin{array}{c} (PdCldpm)_{2} \\ (I) \\ PdCl_{2}dpm \end{array} \end{array} \right\} \xrightarrow{NaBH_{4}} Pd(dpm)_{2} \xleftarrow{NaBH_{4}}{dpm} PdCl_{2}(PhCN)_{2}$$
(1)
$$(11)$$

(II)

(III)

In the absence of added ligand, the borohydride reduction of II, gave an insoluble product analysing for $[Pddpm]_n$.

Under an atmosphere of carbon monoxide the sodium borohydride reduction of II gives the known chlorocarbonyl IV in acetone/ethanol mixtures, and the carbonyl V in ethanol, eq. 2.

$$[Pddpm]_{2}CO \xleftarrow[ethanol]{CO/NaBH_{4}}_{(V)} PdCl_{2}dpm \xrightarrow[ethanol]{O}{actione} [PdCldpm]_{2}CO$$
(2)

It is of interest to note that the Pd^0 complex III reacts smoothly with $PdCl_2$ -(PhCN)₂ to give the dinuclear complex I, eq. 3 thus providing a much simplified synthesis of the latter.

$$Pd(dpm)_2 + PdCl_2(PhCN)_2 \rightarrow (PdCldpm)_2 + 2 PhCN$$
(3)

(I)

Copper(II) chloride reacts with III to give a copper-palladium complex analysing for $(Pd_2Cu_2Cl_6dpm_3)$.

Halogen abstraction reactions. Treatment of acetone or methanol solutions of dichloropalladium(II)-dpm (II) with AgBF₄ led to quantitative precipitation of AgCl and formation of clear orange-red solutions. It was not possible to isolate any stable crystalline solids from these solutions. The presence of solvated cationic entities was inferred, however, from the observations that subsequent treatment with dpm or PPh₃ permitted the isolation of the respective coordinatively saturated complexes VI or VII, eq. 4, S = acetone or methanol

$$PdCl_{2}dpm \xrightarrow{AgBF_{4}} [PddpmS_{x}](BF_{4})_{2} - \begin{pmatrix} dpm \rightarrow [Pd(dpm)_{2}](BF_{4})_{2} \\ (VI) \\ PPh_{3} \rightarrow [Pddpm(PPh_{3})_{2}](BF_{4})_{2} \\ (VII) \end{pmatrix}$$
(4)

Catalytic reactions

Preliminary catalytic tests (numbers 1 and 2 Table 1) with the solvent systems $EtOH/C_6H_6$ and $EtOH/Et_3N$ and CO_2/H_2 (1/1) mixtures confirmed the superiority of the latter for ethyl formate formation [16]. The results of comparative tests under standard conditions (not optimised) with the different palladium and copper complexes (Table 1) indicate that the products consist essentially of ethyl formate, methane, and sometimes small quantities of diethyl oxalate.

The activity of the palladium catalysts in ethyl formate formation is influenced by the nature of the ligand as well as by the coordination and oxidation states of the metal centre. Thus, all the dpm systems (numbers 2 to 7) are

TABLE 1

Experiment	Catalyst	Products (µ-mol)				
number	(µ-mol metal)	CH ₄	HCOOEt	(COOEt) ₂		
1	(PdCldpm) ₂ ^b (340)	250	5	0		
2	(PdCldpm) ₂ (520)	800	2000	1		
3	Pd(dpm) ₂ (440)	40	4000	0.4		
4	$[Pddpm(EtOH)_{r}](BF_{4})_{2}$ (420)	60	1000	1		
5	(Pddpm) _n (320)	200	500	0.2		
6	PdCl ₂ dpm (480)	300	250	1		
7	Pd ₂ Cu ₂ Cl ₆ dpm ₃ (460)	440	2000	0.6		
8	Pd(dpe) ₂ (400)	40	560	0		
9	PdCl ₂ dpe (710)	0	150	0		
10	Pd(PPh ₃) ₄ (480)	20	200	0		
11	PdCl ₂ (PPn ₃) ₂ (480)	0	350	0.3		
12	$[(CuCl)_2 dpm]_2 (340)$	0	30	0		
13	[Cu ₃ Cl ₂ dpm ₃]Cl (410)	0	12	0		
14	$(PdCldpm)_2^{c}$ (420)	40	HCONE ₅ , 1080	(CONEt)2,		

HYDROGENATION OF CO₂, EtOH/Et₃N^a

^a Reaction conditions, CO₂ (15 bar), H₂ (15 bar), EtOH (50 ml), Et₃N (10 ml), 120°C, 24 h. ^b solvent C₆H₆ (50 ml), EtOH (5 ml). ^c solvent C₆H₆ (40 ml), Et₂NH (10 ml).

more active than the diphos (numbers 8 and 9) and triphenylphosphine ones (number 10. and 11); the solvato complex (number 4) is more active than the parent dichlorocomplex (number 6); the most active system is that derived from the palladium(0) complex (number 3). These observations are consistent with the combined effect of the stabilizing influence of the dpm ligand and the electrophilic nature of CO_2 , which requires an electron-rich nucleophilic metal centre [17,20].

The palladium are all much more active than the copper catalysts (numbers 12 and 13). It is of interest to note however that the mixed Pd/Cu system (number 7) has an activity similar to that of the palladium(I) complex (number 2).

The dinuclear palladium(I) compound $(PdCldpm)_2$ in diethylamine/benzene transforms CO_2/H_2 into diethyl formamide; none of the corresponding C_2 product (oxamide) could be detected in the products.

The present results confirm that alkyl formates and dialkyl formamides can be formed catalytically from CO_2/H_2 mixtures [10,17]. However, the juxtaposition of low valent palladium or copper centres does not seem to promote the catalytic formation of C_2 products, although oxalates are formed in less than stoichiometric quantities.

The presence of both formate and oxalate amongst the products raises the question of whether they originate in common or in different intermediates. Formate formation has been interpreted in terms of metal-formato, metal-alkoxy carbonyl- and metal-bicarbonato intermediates [1,10,12-15,17] and that of oxalates in terms of alkoxycarbonyl intermediates [1,21]. Formato and carba-mido complexes seem to be unlikely intermediates [1,22] in the formation of alkyl formates and dialkyl formamides, and we are investigating the possible roles of alkoxycarbonyl- and carbonato-metal compounds as possible intermediates in these syntheses.

Experimental

Unless otherwise stated the preparations of the organometallic compounds were carried out under dry argon. The infrared spectra were obtained with a Perkin-Elmer 580 instrument; characteristic infrared adsorptions in the 800 to 450 cm⁻¹ region are given in Table 2. The ¹H NMR spectra (CDCl₃ solutions, with TMS as internal standard) were recorded on a Varian XL 100 instrument. The microanalyses are by the C.N.R.S. Microanalytical Centre, Solaize, France.

The catalyses tests were carried out in a stainless steel Autoclave Engineers 300 ml Magnedrive unit with commercial grade CO₂ and H₂. The commercial

TABLE 2													
CHARACTERISTIC INFRARED ABSORPTIONS IN THE 800 TO 450 cm ⁻¹ REGION													
Pd(dpm) ₂	775	735				690	513		480	470	-		
(Pddpm)n	775	732		713		690	515		505	480	460		
(Pddpm) ₂ CO	779	739		720		690	518		503	475			
(PdCldpm),	780	740				690	518		505	487			
Pd ₂ Cu ₂ Cl ₆ dpm ₃	780	739		715		690	550		518	505	477	460	
$[Pd(dpm)_2](BF_4)_2$	752	740		718		688	530		502	470	460		
[Pd(dpm)(PPh ₃) ₂](BF ₄) ₂	784	762	748	740	712	690	545	529	510	498	480	472	

grade solvents were distilled before use. The gaseous organic products were analysed by vapour phase chromatography on Carbosieve B and Porapack R and Q columns, the liquid products, after distillation on Porapack R and Silicone SE 30 columns. Published methods were used for the preparation of $[(CuCl_2)_2dpm]_2$ [23] $[Cu_3Cl_2dpm_3]Cl$ [23], PdCl₂dpm [18], PdCl₂dpe [18], Pd(dpe)₂ [24], PdCl₂(PPh₃)₂ [25], and Pd(PPh₃)₄ [24].

Preparation of $Pd(dpm)_2$, (III)

Sodium borohydride (0.08 g, 2 mmol) was slowly added to a solution of dpm (0.39 g, 1 mmol) and PdCl₂dpm (0.56 g, 1 mmol) in ethanol (20 ml). After stirring for 20 min at room temperature the orange product was filtered off, washed with EtOH, and recrystallised from CH₂Cl₂/EtOH,: yield, 0.62 g (70%). (Found: C, 67.5; H, 5.3; P, 14.2. $C_{50}H_{44}P_4Pd$ calcd., C, 68.6; H, 5.0: P, 14.2%), δ (CH₂) = 4.10 ppm (2 protons).

Preparation of $(Pddpm)_n$

The addition of sodium borohydride (0.08 g, 2 mmol) to a solution of $PdCl_2dpm$ (0.56 g, 1 mmol) in ethanol (20 ml) gave a purple precipitate after 10 mins and this was washed with EtOH and dried in vacuum. The product was insoluble in all the common organic solvents: yield 0.40 g (80%). (Found: C, 60.4; H, 4.6; P, 12.7. $C_{25}H_{22}P_2Pd$ calcd.: C, 61.2; H, 4.5; P, 12.6%).

Preparation of $(Pddpm)_2CO(V)$.

Sodium borohydride (0.08 g, 2 mmol) was added to a solution of $PdCl_2dpm$ (0.56 g, 1 mmol) in ethanol (20 ml) under a stream of carbon monoxide. The clear red-brown solution was evaporated to dryness at room temperature. The residue was extracted with CH_2Cl_2 , and the filtered extract slowly evaporated. The crystalline material so obtained was filtered off and dried in vacuum,: yield 0.3 g (60%). (Found: C, 59.9; H, 4.5; P, 11.9. $C_{s1}H_{44}OP_4Pd$ calcd.: C, 60.7; H, 4.4; P, 12.3%), $\nu(CO)$ 1820 cm⁻¹.

Preparation of $(PdCldpm)_2(I)$

Solid $PdCl_2(PhCN)_2$ (0.19 g, 0.5 mmol) was added to a solution of $Pd(dpm)_2$ (0.44 g, 0.5 mmol) in CH_2Cl_2 (15 ml). After stirring at room temperature for 10 min, the clear red solution was concentrated (ca. 5 ml) and treated with methanol. The crude material thus obtained was crystallised from $CH_2Cl_2/MeOH$ to give (PdCldpm)₂, identified by a direct comparison with an authentic specimen [26]: yield 0.42 g (80%).

Preparation of $Pd_2Cu_2Cl_6dpm_3$

CuCl₂ (0.25 g, 1.8 mmol) was added to a stirred suspension of Pd(dpm)₂ (0.44 g, 0.5 mmol) in EtOH (30 ml). After 30 min the yellow precipitate was filtered, washed with EtOH and dried solid was recrystallised from CH₂Cl₂/Et₂O: yield 0.31 g (73%). (Found: C, 51.9; H, 3.8; P, 10.2; Cl, 13.3; Cu, 7.8; Pd, 12.1 $C_{75}H_{66}Cu_2Cl_6P_6Pd_2$ calcd.: C, 52.8; H, 3.9; P, 10.9; Cl, 12.5; Cu, 7.4; Pd, 12.5%) δ (CH₂) = 415 ppm.

Preparation of $[PddpmS_x]^{2+}$ and related compounds

The stoichiometric quantity of $AgBF_4$ (1.05 mmol) was added to a stirred

suspension of $PdCl_2dpm$ (0.28 g, 0.5 mmol) in methanol or acetone. After a few minutes AgCl was formed and a clear orange-red supernatant solution obtained. Concentration of the filtered solutions led to orange-red solids which rapidly decomposed.

 $[Pd(dpm)_2](BF_4)_2$ (VI) and $[Pd(dpm)(PPh_3)_2](BF_4)_2$ (VII). The addition of one equivalent of dpm or two equivalents of PPh₃ to the clear solutions of the cationic salts, prepared as above, resulted in the immediate precipitation of white and cream solids, respectively. (Found: C, 56.8; H, 4.1 P, 12.1. $C_{50}H_{44}B_2F_8P_4Pd$ (VI) calcd.: C, 57.3; H, 4.2; P, 11.8%. $\nu(BF_4)$ 1050 cm⁻¹). (Found: C, 60.1; H, 4.2; P, 10.5. $C_{61}H_{55}B_2F_8P_4Pd$ (VII) calcd.: 60.9; H, 4.4; P, 10.4%. $\nu(BF_4)$ 1050 cm⁻¹).

Acknowledgements

We thank Mr. B. Beguin for technical assistance and the C.N.R.S. for financial support (A.T.P.: Catalyse Homogène, No. 3315).

References

- 1 B. Béguin, B. Denise and R.P.A. Sneeden, J. Organometal. Chem., 208 (1981) C18.
- 2 M. Tsutsui (Ed.) Fundamental Research in Homogeneous Catalysis, Vol. 3, Plenum Press, New York, 1979.
- 3 K.L. Watters, R.F. Howe, T.P. Chojnacki, C.M. Fu, R.L. Schneider and W.B. Wong, J. Catal., 66 (1980) 424.
- 4 A. Camus, G. Nardin and L. Randaccio, Inorg. Chim. Acta, 12 (1975) 23.
- 5 N. Bresciana, N. Marsich, G. Nardin and L. Randaccio, Inorg. Chim. Acta, 10 (1974) L5.
- 6 M. Cowie and S.K. Dwight, Inrog. Chem., 19 (1980) 2500.
- 7 M.P. Brown, J.R. Fischer, R.J. Puddephatt and K.R. Seddon, Inorg. Chem., 18 (1979) 2808.
- 8 G. Holloway, B.R. Penfold, R. Colton and M.J. McCormick, J. Chem. Soc., Chem. Commun., (1976) 485.
- 9 L.S. Benner and A.L. Bach, J. Amer. Chem. Soc., 100 (1978) 6099 and references therein.
- 10 R.P.A. Sneeden, L'actualité chimique, Février, 1979, 22.
- 11 M.W. Farlow and H. Adkins, J. Amer. Chem. Soc., 57 (1935) 2222.
- 12 P. Haynes, L.H. Slaugh and J.F. Kohnle, Tetrahedron Lett., (1970) 365.
- 13 K. Kudo, H. Phala, N. Sugita and Y. Takezaki, Chem. Lett., Jpn., (1970) 1495.
- 14 Y. Inoue, H. Izumida, Y. Sasaki and H. Hashimoto, Chem. Lett., Jpn, (1976) 863.
- 15 I.S. Kolomnikov, T.S. Loheeva and M.E. Vol'pin, Izv. Akad. Nauk SSSR, (1972) 2329.
- 16 Y. Inoue, Y. Sasaki and H. Hashimoto, J. Chem. Soc., Chem. Commun., (1975) 718.
- 17 G.O. Evans, W.F. Walter, D.R. Mills and C.A. Streit, J. Organometal. Chem., 144 (1978) C34.
- 18 W.L. Steffen and G.J. Palenik, Inorg. Chem., 15 (1976) 2432.
- 19 J.A. Davies, F.R. Harley and S.G. Murray, Inorg. Chem., 19 (1980) 2299.
- 20 T. Herskovitz, J. Amer. Chem. Soc., 99 (1977) 2391.
- 21 F. Rivetti and U. Romano, J. Organometal. Chem., 174 (1979) 221.
- 22 T.V. Ashworth, M. Nolte and E. Singleton, J. Organometal. Chem., 121 (1976) C57.
- 23 N. Marsich, A. Camus and E. Cebulec, J. Inorg. Nucl. Chem., 34 (1972) 933.
- 24 D.T. Rosevear and F.G.A. Stone, J. Chem. Soc. A, (1968) 164.
- 25 J.M. Jenkins and J.G. Verkade, Inorg. Synth., 11 (1968) 108.
- 26 R. Colton, R.H. Farthing and M.J. McCormick, Aust. J. Chem., 26 (1973) 2607.